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MATHemATICAL MODELING OF THE AERODYNAMIC CHARACTERISTICS

IN FLIGHT DYNAMICS

Murray Tobak, Gary T. Chapman, and Lewis B. Schlff

NASA Ames Research Center, Moffett Field, CA 94035

i. IETRODUCTION. Mathematical studies of the dynamic stabillty of

aircraft began essentially with Bryan's "Stability in Aviation" pub-

' lished in 1911 [I]. This analysis appeared at the very beginning of

heavler-than-air flight itself, and has remained the foundation for

• practically all subsequent studies of the subject. B. Melville Jones

[2] reported on progress 25 years later and succinctly stated the sub- J

f

ject's principal task:

"Given the shape of the aeroplane and the properties of the

air through which it moves, the air reactions X, Y, Z, L, i

M, N depend on the motion of the aeroplane relative to the

air; that is to say upon the six variables U, V, W, P, Q, R

and their rates of change with respect to time. In prac-

, tlce, the principal difficulty lies in determining the

relationships between X, Y, • • • and U, V, . . ."

The establishment of these relationships with sufficient realism is

what we now recognize as the province of mathematical modeling.

Bryan's formulation, which originated the subject, has at its core

the asst_nption that the aerodynamic forces and moments developed at a

_ given instant are functions only of the instantaneous values of the

variables that determine forces and moments in a steady flow. When in

addition a linear dependence of the forces and moments on these

_4
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variables is assumed, the equations governing the motions of aircraft

reduce to a set of ordinary differential equations having constant

coefficients. With the form of the equations thus established, the

mathematical modeling problem is completed, and the study of stability

becomes synonymous with the study of the coefficients. The nature and

the determination of these coefficients, the "stability derivatives,"

have been the central concerns of experimenters and analysts alike

through the ensuing years.

Later investigations into the transient behavior of the forces and

moments in response to sudden changes in the flow around the aircraft

led researchers to recognize that the forces and moments at an instant

were dependent not only on the instantaneous values of the flow varia-

bles but also on their past values (cf. [3] for a comprehensive summary

and bibliography). The concept of transient aerodynamic force and

moment responses to step changes in the flow variables, i.e., of

"indiclal functions," coupled with the notion of superposition, led to

a new formulation of the equations of motion [4]. This formulation is

exact in principle within the assumption of linearity and the equations

i of motion take the form of Integro-differential equations. However,
reduction of the equations to equations correct to within a first-order

: dependence on time-rates-of-change of the variables restores the for_.__mm
I

of the original ordinary differential equations, which now include terms

that account for the past within the order of the approximation [5].
i

From the standpoint of mathematical modeling, exploiting the concept

of a linear indicia1 response was an important step, since It described

the process oE generating an aerodynamic response to an arbitrary

] 984009073-004
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motion from a few aerodynamic indicial responses by using superposition

integrals. It is from this idea that the _:1odelingapproach derives its

economy in the treatment of time-history effects. Further, use of the

superposition integral overcame in a concise way the first and most

objectionable assumption of Bryan's formulation: the aerodynamic forces

and moments could now depend on the history of the motion. Mathemati-

cally speaking, expressing the aerodynamic forces and moments in the

form of linear superposition integrals replaced Bryan's functions by

linear functlonals.

As time passed, the continual expansion of the aircraft performance

envelope brought new aerodynamic phenomena, such as shock waves and

concentrated vortex flows, into play. It became apparent that the ways

in which these phenomena influenced aircraft motion could not all be

encompassed by even the exact linear formulation of the aerodynamic

forces and moments. A reformulation of the aerodynamic system that was

free of the remaining assumption basic to the original formulation was

now in order. It could be anticipated that the reformulation would

result in the replacement of the superposition integrals, which were

linear functionals, by suitable nonlinear functlonals. As it turned

out, this task could be accomplished easily by the adoption of Volterra's

original conception of a functional [6]. Functional analysis was used

to construct a framework within which the indicial function could be

reformulated as a nonlinear functional [7]; the result was a new defini-

tion for the indicial function that did not depend on a llnearity

assumption. This definition led naturally to the derivation of integral

forms for the aerodynamic forces and moments which were the antlcip ted

1984009073-005
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generalizations of the superposition integrals. As in the case for the

exact linear formulation, it was found possible to reduce the results

to simpler, more practicable forms by virtue of the low angular rates-

of-change characteristic of aircraft motions. Subsequent papers [8-16]

revealed the impl_cations of these results in regard to general motions,

experiments, and a variety of modeling questions. A comprehensive

summary of the work to date is available [17].

In recent years, we have become increasingly aware that our extensive

use of concepts from fuILctlonal analysis in the modeling of systems

governing the dynamical motions of aircraft has been matched or sur-

passed by workers In a wlde variety of fields. Noteworthy in this par-

ticular setting has been the body of work which has developed in several

branches of electrical engineering (for a comprehensive survey, see the

entire contents of [18,19]). We consider it important that the common

features of the efforts in these various fields be brought to the fore

for everyone's benefit. To that end, we shall take this opportunity to

recast the basic ideas of the approach we have taken in the modeling of

nonlinear aerodynamic responses in a way that we hope will be compatible

with some of the approaches taken in electrical engineering. We shall

emphasize the physical aspects of our approach to clarify its relation,

in particular, to the body of ideas underlying the use of nonlinear

functional expansions (cf. [20] for an excellent exposition of the latter

work). Finally, we shall try to show how our analysis can be extended

through its natural counectJon with ideas from bifurcation theory.

_ ®

] 984009073-006
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2. MODELING INFLUENCE OF PAST MOTION BY PULSES. For clarity of

exposition, it is convenient to adopt the two-dlmenslonal wing as illus-

tration. Results will have more general bearing, however.

Let the wing move away from a coordinate system whose origin is fixed

in space at the center of gravity at a time _ = 0. The distance

traveled by the center of gravity along the fllghtpath is measured by a

coordinate s. Let the center of gravity move at constant velocity Vo,

so that the trace of its path, plotted against time _, is a straight

llne. This is shown on Fig. I. The wing is allowed to undergo changes

only in the angle of attack _, where _ is the angle between the

velocity vector and the wing chord llne. Projections of the leading

and trailing edges of the wing onto the plane containing the velocity

vector are maximum when _ = 0. These maximum projections also trace

out straight lines on Fig. I, parallel to the trace of the center of

gravity.

As illustrated in Fig. i, let the angle of attack _ be zero for all

time _ except at _ = _I' where a pulse occurs of amplitude _(_i)

and inflnltesimal width A_l" Consider a measuring point s on the

wing at a time t subsequent to _I" The loading at the point is

influenced by all disturbances that originate in the past and are able

to reach the point at the same time t. Each disturbance is propagated

at the local speed of sound, and hence, in a plot such as Fig. I, the

zone of its influence is bounded by projections of the rays of an

approximately conic surface whose origin is the point of the disturbance.

Only disturbances whose cones include the point (s,t) in question can

influence the loading at the point. Thus, a certain conic surface,

1984009078-007
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directed backward in time from the point (s,t) will include within it

all points in past time whose disturbances are able to influence the

loading at s at time t. The projection of such a conic surface is

shown in Fig. I, where, in the present case, the only disturbances that

exist are those originating from the pulse at _ = _i" It will be seen

• that only disturbances originating from the shaded part of the pulse

can influence the measuring point. Also note that if the elapsed time

t - _i between pulse and measuring point is held fixed and if the same

pulse and the measuring point are translated together to new positions

on the wing in such a way that the trace of the measuring point remains

parallel to that of the center of gravity, then nothing changes in the

form of the loading at the measuring point. This behavior is captured f

by writing the loading at the measuring point in the form of a Taylor

series :

ACp(S,t) = ACp(X,t - _1,_(_1))dir = E an(X't - _1)[a(61)]nA_l
n (2.1)

where loading AC is the difference between pressure coefficients on
P

the lower and upper surfaces, and x is the distance of the measuring

point from the maximum projection of the leading edge (Fig. 1). It will

be noted that, as required, AC remains constant when x, t - _1' andP

_(_1) are held 71xed. The second of the forms in (2.1) will be used in

the subsequent analysis to distinguish between direct (subscript dir)

and interference (sub_cript int) effects. Equation (2.1) holds under

the principal assumption that at least a limited range of a will

exist in which the loading will depend analytically on a. Further, in

more general circumstances, such as in accelerated motion where the

b

|
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trace of the center of gravity will be a curved llne, the dependence on
]

elapsed time t - 61 alone will not hold; the a will then depend onn

t and 61 separately.

Now let us consider the response at the measuring point to a pair of

pulses located at 61 and _2 with _i,_2 < t. Here, in addition to the

direct influence of each of the pulses acting as if in isolation, the

interference between the pulses will also influence the loading. The

interference effect can be written in a form resembling a product of

responses to single pulses

ACp(S,t)int, 2 " Z bmn(X't - _i 't - _2)[a(_l)]m[a(_2)]nA_I A_2
m,n

(2.2)

where the subscript (int,2) is meant to be read as "interference between

a pair of pulses." With the addition of the direct influence of the

two pulses, the loading at (s,t) takes the_form

ACp(S,t) - ACp(x,t - _1,a(_l))dlr + ACp(X,t - _2,a(_2))dir

+ ACp (s,t)int,2 (2.3)

The process of adding pulses can be continued indefinitely in the

same way. At the next stage, e.g., the interference between triplets of

pulses must be considered as well as that between pairs. Going to the

limit of a continuous distribution of pulses starting at time _ = 0

yields a summation of multiple integrals having the form

AC (s,t) = aC + z_C + Z_C + • • • (2.4)

P Pdir Pint ,_ Pint, s

I

1984009073-009
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with

t

• ACpdir = n_o an(X,t - Ez)[a(£1)]ndEz (2.5)

ZfotAC = [_(_2)]md_2 bmn(X,t - £1,t - _2)[a(£1)]nd_l
Pint, 2

m,n _z,o)

t £3

AC = 2 f [a(_3)]md_, _ [¢,(_2)]nd_2Pint, a
m,n,p o o

4"2

× I Cmnp (x't - _l't - £2't - _3)[a(_'l)]Pd£1 (2.7)
%

Written as a nonlinear functional expansion, (2.4) represents the load-

ing at the point (s,t) in response to an arbitrary variation of a

over the time interval zero to t. The form of (2.4) confirms an

important point made in [20]. It will be noted that a summation of the

leading terms in (2.5,2.6,...) forms a Volterra series [6,20]. The fact

that there are terms left over cenfirms that the _ priori adoption of a
i

Volterra series to represent the loading would have been insufficiently

genera[ to accommodate the Taylor series form of the dependence on angle

k of attack.

3. FORMATION OF INDICIAL RESPONSE. Given (2.4), one can now use it

to form the indicial response as we have defined it in [7]. To indicate
i
i

" the form of the result, it will be sufficient to consider terms in (2.4)

only through the series representing ACpint,2. Two motions need to be

considered. In the first, the wing undergoes the motion under study

j _- i

1984009073-010
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a(_) from time zero up to a time _ = T, where T < t. Subsequent to

z, a is held constant at a(z). Thus, in (2.4,2.5,2.6)

a(_)= a(¢) ; 0 < ¢ < z
(3. z)

= a(T) ; ¢ > T

The direct and interference contributions take the forms

_Cpdir " n_o an(X't - _z)[ct(¢z)]ndCx

t

+_ [a(z)]n f an(X't - Cz)dCz
n T

T Cz

+; ACp_ntx,2 =_,n fo [a(_')]mdgz I b[a(_z)]nd_tmn (3.2) +

+

+ 2 f f 't + a(T) d_a bmn[a(_z )in d_I '

mpn "_ 0

, + In(T) ]m+n de 2 bran dCz

m,n T
+

In the second motion, the wlng undergoes the same angle of attack

T history a(_) up to time z. Subsequent to T, the angle of attack isi
I again held constant, but is given an incremental step change Aa over

its previous value of aCT). Thus, in the second motion,

a(¢) = a(¢) ; 0 < ¢ < T } (3.3)= a(T) + Aa ; ¢ >

*

I

1984009073-011
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The direct and interference contributions become

ACpdir =_ an[_(_ 1) + a(T) + As] n an dE1
n o T

AC = [a(_) ]md_2 bmn[a(_l)]ndr,1
Plnt,2 m,n o

'(3.4)
t T

+_ Is(T) +Aa]m fT d_2 fbnm[a(_l)]nd_o

z, ( i+ a(z) + As]m+n d_a brand_1
m,n T

The difference between the two loadings,with terms retained only of

O(Ac_), yields the incremental change in loading in response to the

incrementalstep change in angle of attack:

ACp2 - ACp1 Z I t
Aa " n[a(T) ]n-z a d_ 1n

i
n T

t T

+_m[a(z)]m-l_ d_2 f, bmn[a(_l)]n ,i_lm,n r c

+ (m + n)[a(_)]m+n-1 d_2 brand_I (3.5)
T

Equation (3.5) reveals the form of the Indicial loading response to a

step change in angle of attack in terms of functional expansions. It

: will be seen that the first and third terms on the right-hand side of I

" i
(3.5) do not depend on the p_st motion but only on the level of the t

J
f

1984009073-012
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angle of attack _(T) at which the step was _de. The second term

depends on the past motion, however, since a(C 1) with 0 < 61 <

appears within the integral. The leading te_ of this past dependence

has the form d_ 2 =(_:)bll(x,t - _l,t - _2)d_ . Dependence on
T

the past thus arises from interference effects between pulses prior .o

T, the orlgln of the step, and perturbatlon pulses of 0(Aa_ originating

1 subsequent to T. In the general nonlinear case, then, and Just as

, before [7], the Indlclal response is itself a functional. In the limit

as A_ + O, then (3.5) can be cast in the functional fo_

AC - _C
P2 Pl

lim - -- (s,t) - ACp [_(:);x,t,T] (3.6)_o _a 3_ ACp

where it will be noted that, within the functional, dependence on t
i

and x is indicated separately rather than on elapsed ti_ t - t alone.

It can be easily verified that the first and _hird tems in (3.5), which
J

..

depend only on the level a(T), indicate a dependence on t - T alone;

however, as a consequence of its dependence on the past motion, the

second te_ cannot be cast as a function of t - : alone.m

4. GENERALIZED SUPERPOSITION INTEGRAL. Just as before, (3.6) can

be used to form a generalized superposttion integral for the response in

AC to an arbitrary angle-of-attack variation. The result is

t

_i _Cp(S,t) - :Cp(8,0) + _C [a(_);x,t,T] _-dT (4.1) ,Pa

By substituting (3.5) for AC [a(_);x,t,t] in the integral term in
Pa i

(4.1) and carrying out the integration, one will /erify that the form of I

+

1984009073-013
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(4.1) is restored through terms of the series representing AC .
Pint,2

This should suffice to demonstrate that our use of indlcial responses

and generalized superposition integrals is in fact compatible with the

- approach based on nonlinear functional expansions.

5. PRINCIPAL SIMPLIFICATION. The simplification most instrumental

in making our use of nonlinear functionals in the analysis of aircraft

dynamics practicable has proved to be the reduction of the general

aerodynamic force and moment responses to forms correct to within a

first-order dependence on angular rates. This approximation is Justi-

fied in its application to studies of aircraft dynamics in view of the

generally low reduced frequencies characteristic of aircraft motions.

In the following, the steps involved in the reduction are reviewed in

order to highlight the several advantages of the reduction as well as to

set the stage for a discussion of the amendments required to accommodate

the occurrence of bifurcation phenomena.

Integrating the expression for loading in (4.I) across the chord

e

eliminates the dependence on x and yields a form for the response in

llft coefficient to an arbitrary angle-of-attack variation

:: t

._ _ d_
CL(t) = CL(O) + CL [t,_;a(_)] _-dT (5.1)

ct
o

Note that the order of the dependencies has been reversed within the

functional CL to anticipate the enhanced role played by t and r in

_f the ensuing analysis.

Consider first the behavior of the functional as the elapsed time

t - z increases. It is clear physically that, with increasing t - _,

1984009073-014
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the dependence of CL on the past mot/on _(_); _ _ _ must fade away.
.!

! Thus, as t - _ _ _, CL approaches a function which is dependent only

1 on t - T and _(_), the level of the angle of attack at which the step
i
!

! was made. Additionally, we assume here that as t - T _ _, CL will

approach a unique, constant value corresponding to the lift-curve slope

which would be measured in a steady flow. More precisely, we assume

that fluctuations, which always exist, are small enough to be neglected

in comparison to mean values resulting from ensemble averaging. It is

this assumption that will require amendment in the consideration of

bifurcation phenomena. Here, however, we invoke it explicitly by making

the substitution

Ct [t,_;_(_)] = Ce (_;_(_)) - F[t,_;_(_)] (5.2)

The quantity F is called the deficiency function(al). Provided the

steady-state term CL (_;a(_)) is in fact constant, F must approach

zero as t - _ _ _. When (5.2) is substituted in (5.1), the product of

CL (_;a(_)) and &(r) forms a perfect differential which can be inte-

grated, yielding

t

CL(t ) = CL(_;u(t)) - F[t,_;a(_)] _ dr (5.3)
i
o

where CL(_;a(t)) represents the (mean) lift coefficient that would be

measured in a steady flow with a held fixed at the instantaneous value

a(t). Now we examine the dependence of F on the past motion _).

If a(_) can be considered an analytic function in a neighborhood of

= • (corresponding to the most recent past for an indicial response

with origin at _ - T), then its history can be reconstructed, in

1984009073-015
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principle, from a knowledge of all of the coefficients of its Taylor

series expansion about _ - 3. Since a(_) is equally represented by

the coefficients of its expansion, it follows that the functional F,

with its dependence on a(_), can be replaced without approximation by

a function which depends on all of the coefficients of the expansion of

a(_) at _ = T. Thus, F can be expressed as

F[t,T;a(_)]= F(t,z;a(T),&(T),• • .) (5.4)

Assuming now that a(T) is potentially large but that the rates

_(_),_(_) .... are all always small, we are permitted to expand (5.4)

around the zero values of the rates, so that

F[t,z;a(_)] = F(t,T;_(T),0,0, • • .) + _(z)F_(t,z,a(T),0,0, • .)

2 F&&(t,_;a(T),O,O .... ) + • • •

+ a(z)F_(t,_;a(t),0,O, . . .) + . . + • . (5.5) i

Returning to (5.3) and retaining terms only to within a linear dependence

on &(T), we get for the integral term

t

l(t) = F(t,T;a(z),O,O, . . .) _ dz (5.6)

O

; To the order of the approximation, only the first term of the expansion

of F survives in (5.6). As a consequence, and as the notation shows,

as far as the functional F is concerned, the past motion is simply the

co_tant motion a(_) = a(T). On this basis, it is consistent now to

_, say as well that F will depend only on elapsed time t - x, rather

r than on t and T separately. Expansion of &(T) about T = t and the

_

1984009073-016
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dependence of F on a(T) about a(t) yield, to within a linear depen-

dence on &(t),

l(t) = &(t) / F(u;a(t))du (5.7)

Jo|

where we have assumed F(u;a(t)) = 0 for all u = t - T > ta and t

large enough so that t > ta. Substituting this result for the integral

term in (5.3) yields as the formulation for the lift coefficient

CL(t) = CL(®;a(t)) + _(t) _ Ce.(a(t)) (5.8)
O c_

where

V° [ F(u;a(t))du (5.9)CL.(a(t)) = --i-

and £ is a characteristic length (e.g., chord length).

The simple form of (5.8) contains a number of important advantages.

Since CL. depends only on a(t), within the approximation the response
a

to a_.ny_of a class of sufficiently slowly varying motions which arrive at

the same value of a at time t will yield the same value of CL..
a

In particular, a harmonic motion of infinitesimal amplitude about a mean

value of a equal to the instantaneous value a(t) suffices to obtain !

CL&. This motion is the preferable one from both the experimental and i

the computational standpoint. On the other hand, a finite amplltude

harmonic oscillation about a mean value of a, say am , can be used as i
i

well to obtain CL. at the particular points in the motion where the I
a i

instantaneous amplitude a(t) is such that a(t) = _(t) - a . This fact

enables one to deduce the results for flnlte-amplltude oscillatory I

q984009073-017
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motions from those of inflnltesimal-amplitude oscillations, a consider-

able advantage from the computational standpoint. Finally, and most

important, as will be seen in the contribution to this collection by

. Hui and Tobak, the simplification provides the rationale that allows

decoupling flow-field equations from the inertial equations of motion

and using results for the aerodynamic terms in the mathematical model

from known harmonic motions.

6. CONNECTION WITH BIFURCATION THEORY. We intend to show that our

use of indicial responses as a basis for arriving at the form of the

aerodynamic force and moment leads naturally to the consideration of

bifurcation phenomena. To fix ideas, we restrict attention initially to

laminar flows and assume that the flows are governed by the Navler-

Stokes equations. Further, we assume that the maneuvers and measure-

ments can be carried out with sufficient precision so that they are

effectively er orless and repeatable, eliminating the necessity of

accounting for the presence of random fluctuations. The extent to which

the analysis must be deepened to accommodate turbulent flows and random

fluctuations will be addressed later.

.: We begin by r-ronsidering the maneuvers required to form an indlcial

, response. As before, two maneuvers are involved, both beginning at
q

_ ffi0, a.ld constrained at _ = _, and differing only in the step imposed

on t_.e second maneuver at _ - T. For each maneuver, the lift coefficient

! is measured at a t_me t subsequent to T. If we assume that the dlf-

i ference between measurements at time t, ACL(t), divided by the magnitude
4

+ of the _tep, Aa, exists and is unique in the limit as As for all

1984009073-018
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values of _ = t > T, then we define this limit as the indicial response

in lift coefficient per unit step change in a. Hence, the basic

assumption on which the definition of the indicial response rests will

fail when the indicial response ceases to exist or to be unique. A very

natural way of invalidating the assumption is through the mechanism of

instability, which we have not considered in this context before. It

is here that the possibility exists of extending our analysis by incor-

porating ideas from bifurcation theory.

Consider the first of the two maneuvers involved in the formation of

the indicial response. The angle of attack attains a constant value

_(r) subsequent to T and it is reasonable to expect that the flow

field at the subsequent time t will approach an equilibrium state that !

corresponds to this fixed boundary condition, as the elapsed time

L

t - _ In all of our previous analyses, we have assumed that as the i

flow field approached the equilibrium state it h_came time-lnvariant,

which meant that the corresponding lift coeffident CL(t) approached a

unique constant value CL(_;_(T) ) as t - T * _. As long as this was

true, it was reasonable likewise to expect that an incremental change

in _(_) of 0(Aa) would result in an incremental change in CL(_;_(_)),

likewise of 0(A_). We now recognize that this will be true as long as

the time-invariant equilibrium state represented by CL(_;_(T) ) is

(asymptotically) stable to small perturbations in _. It can happen,

however, that as _(T) is increased in small increments, a critical

value of a(T) can be reached at which the stationary equilibrium state

represented by CL(_;_(z) ) will no longer be stable to small perturba-

tions in a. Of the new equilibrium states that are possible, the

] 984009073-0] 9
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system will seek one which can remain stable to small perturbations.

J

I Now this is precisely the situation that bifurcation theory is designed

I to address. Bifurcation theory tries to classify and characterize the
I

! properties of the new equilibrium states that can arise when the given

i equilibrium state becomes unstable. Of the types of bifurcation phe-

nomena that are possible, perhaps the most typical in aerodynamics is
r

the "Hopf" type, which is characterized as follows: A previously stable

°; time-invariant equilibrilun state is replaced by a time-varying oscilla-

tory equilibrium state. Physically, the usual origin of such a large-

scale oscillatory state is the onset of vortex-shedding. Of the many

! examples, we cite here stall on airfoils when the angle of attack

exceeds a critical angle [21,22] and the wake of the flow past a cylin-

der when the Reynolds number exceeds 50 [23]. Bifurcation theory gives

us the means to incorporate these phenomena within a rational frame-

work, consequently, the possibility of accounting for those critical

points in maneuvers where sudden and dramatic changes in flow structure

may occur.

To conclude, we indicate our current thoughts on the directions in

which the analysis must be extended to acknowledge the important effects

of random fluctuations and turbulent flows. The issu_ has separate

experimental and computational components.

From the experimental standpoint, the presence of random fluctuations

in the maneuvers and the measurements is a practical question which
q

arises even with strictly laminar flows. As we have already indicated,

i however, (cf., in particular, [12]) adoption of ensemble-averaging allows

i us, in principle, to acknowledge the presence of random fluctuations

-- i
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without otherwise having to alter the analysis. On this basis, one can

recognize the probable existence of bifurcation phenomena by the exami-

nation of the mean value of the lift coefficient in the equilibrium

state, say CL(®;_(_)). Values of a at which CL(_;a(_)) is double-

valued, or at which the slope of CL(m;a(_)) with a is discontinuous,

are the signs of probable bifurcation phenomena. We have already noted

the existence of the latter symptoms in several of our previous studies

(cf. [15,16,17]) and, in [17], we have devised a special scheme for

treating them in the particular instance where they reflect the presence

of hysteresis in the equilibrium flow. We now recognize the possibL±ity

of incorporating such special treatments within the more general frame-

work that an analysis based on ideas from bifurcation theory will provide.

Consideration of the question of random fluctuations and turbulent

flows from the computational standpoint brings to the fore an additional

issue. While laminar flows could be said to be governed by the Navier-

Stokes equations, even in the presence of random fluctuations, account-

ing for the presence of turbulent flow in computations centers around

the problem of having to define the equations governing the flow. This

is the turbulence modeling problem. In current practice, it is gener-

ally agreed that any particular realization of a turbulent flow could

be modeled, in principle with sufficient accuracy, by a solution of the

Navier-Stokes equations. However, the existence of rapid and apparently

random fluctuations in the flow makes it mandatory that the equations

be averaged to suppress the appearance of the rapid fluctuations. The

averaged equations, called Reynolds-averaged Navier-Stokes equations,

are then closed by the installation of a suitably chosen closure model.
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This effectively casts the equations in a form similar to that of the

original Navier-Stokes equations. Therefore, in application to modeling

the equilibrium flows associated with the formation of indicial responses,

we should expect the modeled turbulent flow equations to mirror behavior

previously captured by the Navier-Stokes equations in app]ication to

laminar flows. Thus, typically, when they are applied at low values of

a(_), modeled turbulent flow equations should yield solutions for equi-

librium flows that are invariant with time. But, Just as before, time-

invarlant equilibrium flow solutions that had been stable for values of

a(T) below a critical value should be expected to become unstable upon

exceeding the critical value, and to seek a new branch of stable solu-

tions. One possibility is a branch consisting of tlme-varylng oscilla-

tory solutions. Encouraging evidence is available that modeled turbulent

flow equations in fact can be sufficiently general to exhibit such

• instability and bifurcation phenomena. In particular, the results of

Levy ([24-26]; see also the discussion in [27]) for transonic flow past

a biconvex airfoil show the typical Hopf-type bifurcation that reflects

the onset of vortex-sheddlng in the wake, when either Reynolds number,

Mach number, or lift coefficient exceed critical values. An analogous

_ problem involving the occurrence of aileron buzz at transonic speeds
k

: when either Math number or angle of attack exceeds critical values, has

been treated by Steger and Bailey in [28].

The concerns of turbulence modeling research and those of research in

, the modeling of aerodynamic responses converge on the issue of the

bifurcation behavior of equilibrium flows. In Judging the importance of

this issue, one should note that bifurcation phenomena reflect the
'b
I
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occurrence of sudden and potentially dangerous changes in flow structure

during dynamic maneuvers. A resolution of the issue hinges in great

part on the correct identification of these occurrences as the relevant

parameters (e.g., angle of attack, sideslip angle, Reynolds number, Mach

number) range over their respective envelopes, and their capture by

means of computations based on modeled equations of turbulent flow. In

: application to two-dimenslonal flows past airfoils, as we have seen,

modeled equations of turbulent flow have given evidence of their ability

to capture the Hopf-type bifurcations typical of the onset of vortex-

"j shedding. In application to the inescapably three-dlmenslonal flows

z typical of modern slender aircraft, modeled equations of turbulent flow

._ will be called upon additionally to capture bifurcation phenomena such

as the asymmetric vortex flows and vortex breakdowns that will appear

as the parameters are varied over their extensive ranges.
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FICURE CAPTION

Fig. I Boui_ _ry conditions for loading due to .....: in angle of attack.
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